Article

Numerical Analysis of Conformal UC-PBG Structures

In this paper, the performance of conventional Uniplanar Compact Photonic Band Gap (UC-PBG) structures is investigated under different bending extents. The structure under study is operated as an Artificial Magnetic Conductor (AMC) in which performance is mainly characterized by its resonant frequency and bandwidth. Modelling and numerical analysis have been carried out using CST Microwave Studio simulation software which is based on Finite Integration Technique (FIT). Results show that different bending extents affect the AMC's performance which is specified by a shift to higher resonant frequencies and bandwidth degradation when the degree of bending is increased. Furthermore, we point out some important simulation tips to avoid inaccurate and/or invalid results. This type of study is important to evaluate the performance of such structures for conformal applications. To the best of the authors' knowledge, such type of systematic study is being reported for the first time.

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.